
1

Enterprise
Browser Security:
A New Way
to Protect Users,
Devices, and Data
White paper | January 2024

Seraphic Security

2

Table of Contents

Introduction: Browsers are the primary enterprise application ..3

A new approach to protect the device, user, and corporate data4

Protecting the device by protecting the browser ...6

Protecting user credentials and sessions ... 11

Securing corporate data ... 15

Access control for web-based applications ..17

Conclusion: Better enterprise security begins with the browser20

Glossary ...21

3

Introduction:
Browsers are the primary enterprise
application
70% of organizations currently support hybrid work and such arrangements are
possible only because many line-of-business applications are now delivered
via Software-as-a-Service (SaaS).1 As a result, 85% of workers do most or all
their work in a web browser.

Web browsers are the de facto client for enterprise applications and services:
a “super app” that is the hub of the modern digital workplace. The increasing
popularity of web-based productivity suites like Google Workspace and Microsoft
365, coupled with a wide variety of smaller but equally important SaaS-based
applications that range from collaboration to project management to payment
processing, has made the browser an indispensable tool for the modern
workforce. The fact that browsers are continuously executing external code
can potentially create substantial risks but because browsers are the nexus
for such a wide variety of threats, they are also an ideal location to consolidate
the delivery of security capabilities.

A necessary precondition for a secure digital workplace is an uncompromised
endpoint that is accessible only by an authorized user. If that requirement cannot
be satisfied, then both the data at rest on the device and the data in use as it is
accessed from the device are at risk. Such data may take the form of a user’s
credentials or session information (e.g., cookies or tokens), or it may be an
organization’s proprietary information. Creating such a secure digital workspace
requires protecting against two distinctly different kinds of threats: those that
can impact users and endpoints when they access untrusted resources—such
as the public Internet—and those that can impact corporate resources when
they are accessed by untrusted endpoints.

1 The Littler® Annual Employer Survey Report, May 2023 –
https://www.littler.com/files/2023_littler_employer_survey_report.pdf

https://www.littler.com/files/2023_littler_employer_survey_report.pdf

4

A new approach to protect
the device, user, and corporate data
In the last few years multiple new approaches to protect the browser have
emerged:

• Local isolation – opening the browser in a separate VM machine locally,
ensuring that malicious code is isolated within the context of a virtual instance
and does not affect the host device.

• Remote isolation – opening selected browser sessions in a remote browser,
ensuring that a potentially malicious code stays isolated and doesn’t affect
the host device.

 These methods have proven somewhat effective against specific types of
attacks targeting the endpoint. However, these approaches are less effective
when it comes to protect the user identity, and they do have a substantial
price in form of degraded end-user experience.

The two vectors of threats against organizations

Public web sites

Enterprise resources

Figure 1 – Scenario 1: External attacks against trusted endpoints,
Scenario 2: Threats against corporate assets from untrusted endpoints

5

• Browser Extension – providing browser governance, control and threat
prevention by adding a browser extension, as part of the extension framework
provided by different browser vendors. Browser extension adds local protection
in the browser. However, browser extensions are constrained by the Extension
APIs exposed by the browsers and, because of the restrictions the APIs impose,
do not have visibility into all browser and user actions.

• Dedicated browser – replacing the existing browser with a different browser
which is managed by the enterprise. This approach requires migration to
a new browser. Users lose the benefit of the advanced features because
building a derivative browser requires a significant investment both to
maintain synchronization with the upstream project and to bridge the gap
between the feature-functionality available in mainstream browsers from the
dominant vendors. Even with a dedicated browser, the device is still exposed
as the user can use other browsers which aren’t controlled by the enterprise.
Moreover, these browsers are forks of Chromium meaning that they inherit
all of the bugs and vulnerabilities of Chromium, but they are also unable to
improve security without making substantial modifications—modification
which well-resourced organizations such as Google and Microsoft have, so
far, been unable to make—to the bundle of highly complex components that
comprise Chromium.

Seraphic takes a different approach, one that is not limited to a specific browser
nor does it require a migration to a new browser, it is seamless to the end user,
and it is also not limited by extension manifest. Seraphic is a JavaScript agent
sitting in the heart of the browser, on top of the JavaScript Engine, providing
it with runtime context not available in other solutions. This unique location
makes it possible to apply innovative approaches—such as Moving Target
Defense (MTD)—to exploit prevention and other real-time analysis techniques
that don’t depend on threat intelligence feeds and static Indicators of Attack
(IoAs) Indicators of Compromise (IoCs) to stop sophisticated attacks such as
spear phishing and HTML smuggling. The result is unparalleled protection for
the device, user and data.

6

What is a browser agent?

Despite the substantial role of the browser in the delivery of modern IT, it
is generally not considered a security tool. The Seraphic browser agent
is executed directly by the browser engine (rather than interfacing with it
via the Extension API) enabling it to deliver advanced enterprise security
capabilities that other tools—such as OS agents, extensions, proxy, and
dedicated browsers—cannot provide. The Seraphic Agent is native
JavaScript meaning that it is not only browser agnostic, but it can be
used anywhere there is a JavaScript runtime: apps based on Electron
or Microsoft Edge WebView2, Office 365, NodeJS, JerryScript, and more. 2

Protecting the device
by protecting the browser
It is often assumed that tools such as Antivirus/Endpoint Protection Platforms
(EPP) and Endpoint Detection and Response (EDR) can prevent compromise of
the endpoint via the browser in the same way that they prevent compromise
via other processes: by using hooks in the operating system kernel to monitor
and interact with system calls and track process trees.

Unlike the majority of operating system processes, however, browsers possess
an execution space that is invisible to external tools. Routine browser operations
such as Document Object Model (DOM) and image rendering, or just-in-time
compilation and execution of scripts—all of which can potentially be used to
trigger vulnerabilities in browsers or gain unauthorized access to information
browsers store—take place entirely within the browser process and are therefore
invisible to traditional operating system-based approaches. By the time that
malicious activity originating in the browser is identified by conventional endpoint
tools, it is often too late.

Like any complex piece of software, browsers contain bugs, some of which
manifest as security vulnerabilities. In fact, hundreds of high-severity browser
vulnerabilities are discovered every year.

2 JerryScript is a lightweight JavaScript engine intended to run on constrained devices such as the
microcontrollers used in Internet of Things (IoT) devices

7

Figure 3 – Number of browser vulnerabilities with a CVSS 3.0 score
greater than 7, 2020–2023 (YTD); source: cvedetails.com

Browsers are also the targets of a disproportionate number of the zero-day
exploits discovered in the wild.

Because browsers—by design—access the public Internet and process untrusted
code, it is much easier for adversaries to reach the attack surface created by these
vulnerabilities. In order to stay safe, users must update their browsers. However,
there is always a delay between the discovery of an exploited vulnerability and
the development and release of a patch. Furthermore, patching may be delayed
if there is no mechanism in place for organizations to enforce the updates (which
usually involves a voluntary browser restart by the end user) or if organizations
intentionally postpone browser updates during the compatibility testing they
rely on to ensure business continuity. Until every browser is running a fully up-
to-date version, organizations remain in the “patch gap” and exposed.

Figure 4 - Browser 0-days vs. All Other 0-Days in the wild,

2020–2023 (YTD); source: Google Project Zero

0

50

100

150

200

250

300

350

400

2020 2021 2022 2023

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

2019 2020 2021 2022 2023

Browser 0-days All Other 0-days

High severity browser vulnerabilities

Zero-day exploits in the wild

8

 Figure 5 - The "patch gap" timeline, which is often a minimum of two weeks but can vary
widely based on procedures within organizations

Although patch management does provide some measure of protection, it may
be short-lived given the frequency of zero-day exploit discovery is increasing. This
means that organizations who have just completed a patch cycle addressing
one vulnerability may find themselves exposed to a new one and repeating
the patching process in an endless loop.

Figure 6 - Average interval (in weeks) between discovery of browser 0-day exploits in the
wild, 2020–2023 (YTD); source: Google Project Zero

Browser exploitation is only one of the methods that can lead to device
compromise. Web-based attacks such as Cross-Site Scripting (XSS) and “drive-
by compromises”, also known as HTML smuggling, can lead to the delivery and
execution of malware. These attacks rely on the innate behavior of browsers

0

1

2

3

4

5

2020 2021 2022 2023

Vulnerability
disclosed

(T)

Vendor releases
patch

(T + 15d1 avg)

Adversaries
develop exploit

(T + 17d1 avg)

Org begins
applying patch

(T + 15d + ?d1 + ?d2 + ?d3)

Org begins
testing patch
(T + 15d + ?d1)

Org completes
testing

(T + 15d + ?d1 + ?d2)

Org completes
patching

(T + 15d + ?d1 + ?d2 + ?d3 + ?d4)

Pain

Exposure

The patch gap

Frequency of browser 0-day exploit discovery

https://owasp.org/www-community/attacks/xss/
https://attack.mitre.org/techniques/T1189/
https://attack.mitre.org/techniques/T1189/

9

rather than vulnerabilities and, in the last few years, the persistence and durability
of malware families like GootLoader and SocGholish—which are often delivered
through such attacks—have made it increasingly clear that they are capable
of evading existing defenses and represent a viable path to compromise end-
user devices.

To protect endpoints from compromise via the browser, a solution that uses
a browser-based approach with characteristics similar to those of operating
system-based solutions is necessary. Seraphic adds such security directly to
any browser.

The Seraphic browser agent creates an abstraction layer between external code
and the heart of the browser: the JavaScript Engine (JSE). Similar to Address Space
Layout Randomization (ASLR), the Seraphic agent applies patented, dynamic
randomization to the browser’s execution environment which eliminates the
deterministic nature of certain artifacts required for triggering of vulnerabilities
and prevents exploitation without the need for any a priori knowledge of the
underlying vulnerability or other detection techniques. Also, like ASLR, this protection
is completely transparent to end users, does not impact performance, and does
not alter the behavior of benign code. Seraphic does not depend on detection
techniques, which are ineffective against new, novel, and unknown patterns
which offers protection against zero-day and unpatched N-day exploits (i.e.,
Seraphic protects browsers during the “patch gap”).

How Seraphic works

Figure 7 – The Seraphic Agent can be injected by extension, proxy, or embedded in a
dedicated browser. It creates an abstraction layer that can monitor, intercept, and
control the interactions between incoming code and the JavaScript Engine.

Incoming code

Seraphic Agent
Abstraction layer

JavaScript Engine

Extension

Proxy

Embedded
Browser

Intercepts/controls
all interaction with
the browser engine

10

The unique location of the Seraphic agent also provides visibility and runtime
context that enables unmatched detection and response capabilities within
the browser itself, similar to those of EDR at the OS level. The Seraphic agent
monitors and evaluates real-time browser telemetry and user context, enabling
it to accurately detect and block other web-based attacks, including difficult-
to-identify techniques that bypass traditional network- and endpoint-based
technologies.

Seraphic Attack Protection in Action: SocGholish

SocGholish is a long-lived malware family that is frequently deployed to
provide initial access and deliver additional payloads such as ransomware.
It is often served from compromised websites with good reputations and—
because it is JavaScript-based—it is trivial to obfuscate. Seraphic routinely
detects and blocks SocGholish infection attempts that go undetected by
other security tools. In the first nine months of 2023, Seraphic prevented
an average of 100 SocGholish infections per month.

Comparison of attack protection capabilities

Approach Effect

Seraphic
(Browser
Agent)

Prevents exploitation of unknown and
unpatched vulnerabilities

Protects during the “patch
gap”

EPP/ EDR
(OS Agent)

Detects known techniques/ methods Limited protection against
unknown exploits

Proxy Requires HTTPS interception, deep
packet inspection, and network
sandboxing but is trivial to evade

No protection against
unknown exploits

Dedicated
Browser

Only detects known malware
in dedicated browser; inherits
Chromium vulnerabilities and doesn't
protect endpoint from exploitation of
other browsers

No protection against
unknown/unpatched
exploits
Requires patching;
has longer patch gap

Extension Offers limited protection against
known malware

No protection against
unknown exploits

Table 1 - Differences between the web-based attack protection capabilities of various
security tools

11

Protecting user credentials and sessions
Phishing and stolen credentials are not new or novel threats, but recently they have
risen to become the most common methods of compromising an organization.
There were record numbers of phishing attacks in three consecutive quarters in
2022 and stolen credentials were involved in nearly half of all breaches between
late 2021 and late 2022.3

There are several reasons why these methods have grown so popular

1. The range of potential targets is nearly universal. Performing these attacks
does not depend on any specific technology, device, platform, or operating
system version.

2. The barrier to entry is extremely low. Like most conventional technology
offerings, phishing campaigns and infrastructure can also be delivered “as-
a-service” without any heavy up-front investments in activities like reverse
engineering and exploit development that may be required for other forms
of attack.

3. The risk-to-reward ratio favors attackers. they don’t have to “burn” exploits
and hope that they remain undetected throughout the attack. A successful
attack allows them to impersonate an authorized user with all the attendant
access to enterprise resources and without any special tooling. Once they’ve
established a foothold, they can expand their attacks.

4. The last line of defense is typically a person and people can be easier to
manipulate because they can be relied upon for their good-faith efforts to
do their jobs, rather than depending on the existence of a specific flaw in
technology or code.

The core of any successful phishing attempt is a sufficiently convincing or
authentic-looking login page or web form. While considerable time and effort
are expended to teach users what to look for, UI redressing techniques like

3 APWG Phishing Trends Activity Report, 4th Quarter 2022 –
https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf;

 2023 Verizon Data Breach Investigations Report –
https://www.verizon.com/business/resources/reports/dbir/2023/master-guide/

https://docs.apwg.org/reports/apwg_trends_report_q4_2022.pdf;
https://www.verizon.com/business/resources/reports/dbir/2023/master-guide/

12

clickjacking and Browser-in-the-Browser (BitB) are making that training less
and less effective. However, there are several other approaches that are being
taken to address these attacks:

1. Intelligence feeds – Email gateways and secure web gateways use shared
data from different sources to identify and strip or block malicious ULRs.
Unfortunately, this only provides a partial solution. Phishing sites are very
short-lived, lasting an average of 21 hours and the anti-phishing ecosystem
usually takes about nine hours to determine that a site is malicious (and
longer still for that verdict to be disseminated). That means that phishing
sites are unclassified for almost 1/2 of their existence and, even then, over
1/3 of phishing site visitors reach those sites after they’ve been classified as
malicious.

Figure 8 - Phishing attack timeline: typical campaigns last less than 24 hours but take an
average of 9 hours to be discovered. Over 1/3 of phishing site visits occur after the site has
been discovered.

2. Static and dynamic analysis by automated web crawlers – These solutions
continuously analyze websites, trying to find indications of malicious intent.
While these bots are successful at identifying some sites, adversaries now
employ a wide variety of server- and client-side cloaking techniques—some
as simple as CAPTCHAs—to attempt to ensure that the phishing page is
shown only to the intended victim and innocuous pages are shown in any
other scenario.

4 Oest, et al – Sunrise to Sunset:
Analyzing the End-to-end Life Cycle and Effectiveness of Phishing Attacks at Scale,
https://www.usenix.org/system/files/sec20fall_oest_prepub.pdf

Phishing
campaign launch

(T)

1st detection by
anti - phishing

entity
(T + 9h, avg)

Last victim visits
phishing site
(T + 21h, avg)

37.73% of traffic occurs
after detection

Peak mitigation
e.g., Google Safe

Browsing
(T + 16h, avg)

Exposure

Lifecycle of a phishing campaign

https://www.usenix.org/system/files/sec20fall_oest_prepub.pdf

13

Seraphic provides multiple protections for user credentials and other authentication
material:

1. As in the case of web-based attack detection described above, the Seraphic
agent monitors and evaluates real-time browser telemetry and user context to
identify risky sites and renders them in read-only mode so users cannot input
their credentials or other sensitive information. Because Seraphic is directly
monitoring browser and user activity in real time, it is highly resistant to all
of the evasion techniques (e.g., CAPTCHAs) that confound other solutions. It
does not depend on any threat intelligence offers protection from unclassified
and otherwise unknown URLs.

2. Seraphic can also encrypt cached/long-lived authentication material such
as session cookies and tokens, meaning that any attempt to steal them will
yield unusable versions and stop any user impersonation or session hijacking.

Protection Against a Real-world Breach: Okta

In October 2023, the Okta support case management system was
compromised by attackers who leveraged it to gain access to customer
HTTP Archive (HAR) files containing session cookies of those customers’
users. The attackers were then able to use those session cookies to gain
unauthorized access to customer environments. Seraphic encrypts session
cookies at rest in browser storage, as well as during the recording of HAR
files. Had the session cookies been protected by Seraphic, they would
have been useless to the attackers.

3. Seraphic can be configured to notify organizations of password reuse,
enabling them to require password changes. Taking timely action on reused
passwords makes organizations much more resistant to credential stuffing
attacks.

14

Seraphic Attack Protection in Action:
Reverse Proxy Phishing

Multi-Factor Authentication (MFA) has significantly reduced the impact
of conventional phishing, causing adversaries to pivot to tools such
as Evilginx and Modlishka that proxy requests directly to websites and
capture the session cookies and/or tokens generated during successful
authentication. Seraphic’s ability to analyze page attributes at runtime
and render the page in read-only mode enables the identification
and prevention of these sophisticated attacks, safeguarding sensitive
authentication material from theft and stopping attackers from being
able to impersonate valid users.

Comparison of identity protection capabilities

Approach Identity Protection Credential Re-
use Protection

Seraphic
(Browser
Agent)

Evaluates page
attributes in real
time, does not
require external data

Encrypts session
cookies, blocks user
input on unknown and
known phishing sites

Alerts on
credential re-use

EPP/ EDR
(OS Agent)

Intelligence-based
protection only

No protection for auth
mat'l, only blocks
known phishing sites

No protection
against credential
re-use

Proxy Relies on
database(s) of
known phishing URLs

No protection for auth
mat'l, only blocks
known phishing sites

No protection
against credential
re-use

Dedicated
Browser

Relies on
database(s) of
known phishing URLs

Only protects auth
mat’l in dedicated
browser , only blocks
known phishing sites

No visibility for
credential use
outside dedicated
browser

Extension May be able to
identify phishing
sites but cannot
prevent input

No protection for auth
mat'l

No protection
against credential
re-use

Table 2 - Differences between the identity protection capabilities of various security tools

15

Securing corporate data
Browsers provide quick and efficient access to a wide variety of enterprise
resources and data. Unlike the early days of the web, this data isn’t only for
download and use in external applications. Now the browser renders much of
this data — documents, presentations, spreadsheets, or videos, etc.—directly
and, importantly, also enables users to interact with it.

While this capability creates a tremendous amount of convenience, it also
creates significant challenges to controlling how and where the data flows.
Ensuring that data stays within the browser or remains confined to particular
websites or applications is an increasingly difficult problem. There are two
common approaches to dealing with this challenge:

1. Implementing Data Leakage Prevention (DLP) scanning and enforcement
policies at a web gateway (typically a forward proxy). In organizations where
every employee works from a corporate office, this can be effective because
it is easy to ensure that all traffic traverses the proxy. However, these tools
perform in-line inspection and enforcement, so they lack the ability to control
basic user actions like copy/paste, print, and screen capture. The use of
proxies also becomes a much more complicated problem when end users
work remotely or if they’re using personal devices because it is harder to
force traffic through the proxy. There are also practical limits to the amount/
depth of inspection that proxies can perform, given the constraints imposed
by the availability of compute and network resources, creating the potential
for significant performance impact to end users.

2. For SaaS applications, organizations may implement a Cloud Access
Security Broker (CASB). CASBs can perform scanning and enforcement by
operating as a reverse proxy, via an API integration, or a combination of the
two. They enable administrators to prescribe the ways in which users interact
with applications and data, but they also require traffic steering, may only
have visibility into sanctioned applications (offering no protection against
unsanctioned applications or “shadow IT”), and also lack control of user
actions within the browser. Although some organizations may use Secure
Web Gateways (SWGs i.e., forward proxies) in conjunction with their CASBs to
monitor and control unsanctioned applications, this approach is generally
ineffective for unmanaged endpoints because it is not possible to reliably
force traffic through the proxy.

16

 Figure 9 – Browser data loss vectors: copy/paste from the browser into external
applications and data “hair pinning” from a sanctioned service to an unsanctioned one.

Because Seraphic operates in the browser, it protects sensitive data regardless
of web destination. Seraphic uses a flexible policy framework that allows
administrators to create granular definitions of sensitive data and tightly control
how users interact with that data by:

1. Providing full control of all user actions, including copy/paste, print, manual
data input, viewing page source, or opening developer tools.

2. Dynamically masking sensitive, so it is not displayed to the user.

3. Preventing the download of sensitive files to unmanaged devices while
allowing access within a protected browser session, enabling users to work
but stopping accidental or intentional data leakage.

4. Blocking screen capture or screen sharing of protected browser sessions.

5. Watermarking web pages and data with unique session identifiers so the
source can be traced if data is leaked through a photograph of a screen.

The Seraphic agent performs all analysis and enforcement locally, without the
need to upload anything to the cloud, providing a superior end-user experience
and ensuring a company’s data always remains within their environment and
under their control.

Copy/paste
to external

app(s)/
document(s)

Enterprise web
app/ cloud storage

Personal/unsanctioned
web app or cloud storage

Data loss risks from the browser

17

Comparison of DLP capabilities

Controls Effect

Seraphic
(Browser
Agent)

Can control all user actions in
browsers and desktop SaaS
apps

Performs all scanning and
protection on the client; masks
sensitive data

EPP/ EDR
(OS Agent)

Can only monitor local
storage/ devices, no visibility/
control for SaaS and web

No protection for auth mat’l

Proxy No control of client-side
activity

Requires traffic-steering client

Dedicated
Browser

Only restricts activity in
dedicated browser

Only protects data in dedicated
browser, no support for additional
browsers or desktop SaaS apps

Extension Controls constrained by
capabilities available to
extension APIs

Limited ability to control user
actions or restrict data flow

Table 3 - Differences between the web/SaaS DLP capabilities of various security tools

Access control for web-based applications
The “webification” of enterprise applications is a decades-long phenomenon
driven by a range of factors including cross-platform compatibility, cost-
effectiveness, scalability, ease of maintenance and use, and more. While the
cloud-based delivery of SaaS apps makes many enterprise resources accessible
from anywhere, many organizations still have on-premises web applications
that are accessible only from the corporate network.

As hybrid and remote work took hold, the use of Virtual Private Networks (VPNs)
became necessary to ensure employees could continue to access resources
essential to their jobs, even if they were offsite.

Although VPNs are intended to provide secure access to corporate networks,
they may actually have the opposite effect:

18

1. Successful phishing or other credential compromise can enable adversaries
to gain access to the corporate network with the same privileges as the user,
and potentially allow them to move laterally and gain additional access.

2. VPN infrastructure creates additional attack surface and these systems have
consistently been identified as having some of the most routinely exploited
vulnerabilities that can give attackers access even if they don’t possess valid
credentials.

3. Their logging capabilities may not provide a clear picture of user activity,
requiring SOC analysts or Incident Responders to correlate VPN logs with
application logs to construct an audit trail.

4. VPN infrastructure doesn’t provide any native DLP capabilities, meaning that
additional tools must be deployed or integrated to protect data flowing out
of the corporate datacenter.

There are multiple new technology categories attempting to make up for the
deficiencies of legacy VPN:

1. Virtual Desktop Infrastructure (VDI) isolates the endpoint from direct access
to the network, but requires its own costly and complex infrastructure, may
not completely eliminate the need for VPN infrastructure, and may suffer from
performance problems.

2. Zero Trust Network Access (ZTNA) products attempt to reduce the risk of
unauthorized access and lateral movement through the use of strong
authentication and application of the principle of least privilege (usually
through default deny rules and micro segmentation). Secure Access Service
Edge (SASE)/Security Service Edge (SSE) vendors offer “private access”
options but those are effectively VPNs which terminate in vendor datacenters,
requiring complex network peering between the vendor’s datacenter(s) and
the datacenter(s) belonging to the organization. SASE/SSE vendors may
also be able to provide some DLP capabilities for on-premises apps, but
implementation of the private access offering is a prerequisite.

Seraphic provides an efficient solution that addresses all these pain points—
regardless of who the user is and what device the user is using to access
corporate resources—by transforming any browser into both the remote access
client and an access control enforcement point:

19

1. It can control access to both internal and SaaS web applications without the
need for any complex and expensive infrastructure. The access is based on
least privilege, taking the user, device and the network used into account.

2. It can be deployed in multiple ways, allowing organizations to support managed
endpoints while also offering minimally invasive options for unmanaged
endpoints. It does not require the installation of any additional security agents,
host-checkers, or monitoring tools.

3. It provides full control and monitoring of all user activity in the browser,
regardless of the site or application, the type of action, whether the traffic is
encrypted or not, even if all of the activity is confined to the browser.

4. It allows organizations to control the flow of data by designating authorized
destinations.

Attack Surface Reduction with Seraphic:
Remote Access

A number of breaches have resulted from attacks on remote access
infrastructure and vulnerabilities in those products are routinely listed
as some of the most-exploited by authorities like the Cybersecurity and
Infrastructure Security Agency (CISA). Seraphic enables browsers to
become remote access clients without exposing infrastructure directly
to the public Internet, thereby reducing the risks of providing access to
on-premises applications.

20

Comparison of access control capabilities

Approach Effect

Seraphic
(Browser
Agent)

Transforms browsers and
desktop SaaS apps into
enforcement points

Identifies unsanctioned apps

EPP/ EDR
(OS Agent)

No web or SaaS app access
controls

No protection

Proxy Requires traffic-steering
client, also requires network
peering for on-premises web
applications

Requires log correlation to
identify unsanctioned apps

Dedicated
Browser

Requires all access to be
through a single browser, no
support for additional browsers
or desktop SaaS clients

Only identifies unsanctioned
apps if access via the dedicated
browser

Extension Depends on browser vendor
APIs for identification and
access control capabilities

May identify unsanctioned apps
but may not be able to enforce
access controls

Table 4 - Differences between the access control capabilities of various security tools

Conclusion:
Better enterprise security begins
with the browser
Despite its humble beginnings as a consumer application, the browser has
evolved into a critical productivity tool for modern enterprises. The browser’s
central role also exposes it—and the organizations that depend on it—to a wide
variety of risks. Because browsers are at the intersection of productivity and risk,
they are also the ideal location to deploy the security capabilities required by
modern enterprises. Seraphic provides a simple yet comprehensive solution to
address these risks that is transparent to end users, enabling them to continue
working from their mainstream browsers, while also giving organizations better
protection for their users, endpoints, and data.

21

Glossary
Browser Agent – A browser agent is a security tool (similar to an operating
system security agent) that is executed directly by the browser engine and
“hooks” the browser engine, giving it complete visibility into browser operations
and providing the most effective protection and policy enforcement.

Browser Agents should not be confused with Browser Extensions, which are
add-ons that interact with the browser using a specific API.

Browser Isolation – A generic term encompassing different techniques for
keeping the execution of a web browser and the code it renders/executes
separate from a host operating system. There are two basic categories of
browser isolation: Local Browser Isolation and Remote Browser Isolation.

• Local Browser Isolation (LBI) – The process of executing a browser in a
dedicated virtual machine (VM) on an end user’s device. While this approach
can contain the damage of certain types of attacks (e.g., browser exploits)
but are ineffective against others (e.g., phishing and session cookie/token
theft). Maintaining isolation between the between the browser and the host
OS can also negatively impact the user experience (e.g., by disrupting file
downloads and taxing system resources).

• Remote Browser Isolation (RBI) ¬ The process of executing a browser on
virtualized server infrastructure (e.g., in a VM or container). Remote browser
isolation can use either “pixel pushing” (which streams bitmaps similar to
the way in which many virtual desktops are rendered) or Document Object
Model (DOM) Reconstruction (which renders/executes the web content and
strips the dynamic elements). In addition to the limitations of LBI, RBI frequently
creates application compatibility problems and is also affected by network
congestion.

Electron Framework – A framework designed to enable the creation of desktop
applications using web technologies such as HTML, CSS, and JavaScript. Electron
renders UI elements using Chromium and makes building cross-platform
applications easier because it doesn’t require developers to maintain separate
codebases for different platforms.

The use of Chromium means that apps built using Electron are effectively
additional web browsers and, like all Chromium derivatives, Electron apps will
inherit Chromium bugs and vulnerabilities. They may also have a longer “patch

22

gap” because the framework must be updated with the new version of Chromium
and then app developers must update the framework used by their app.

Enterprise Browser – An emerging product category of web browsers and—
in some analysts’ definitions—browser add-ons focusing on the security and
productivity needs of enterprises rather than the commercial objectives of large
browser vendors or the feature/functionality needs of consumers.

Virtually all modern Enterprise Browsers are derivatives of Chromium and
therefore inherit all of its bugs and vulnerabilities. They may have longer patch
gaps than mainstream browsers due to the independent development pipelines
that are gated by the release of the patch from the upstream code repository.

Enterprise Browsers may also struggle to provide additional security capabilities
because they do not (and cannot) fundamentally alter the behavior of the
core components such as the Document Object Model (DOM) Renderer and
JavaScript Engine (JSE).

Enterprise Browser Extension – A component for customizing the capabilities
of a web browser to include enterprise-focused management and security
capabilities. The ability of such extensions to implement these capabilities
is constrained by the Application Programming Interfaces (APIs) exposed by
individual browser vendors and cannot be applied to all browser operations
(e.g., extensions cannot examine HTTP POST request) making them ineffective
for providing protection against certain attacks or enforcing certain kinds of
policies.

Microsoft Edge WebView2 Runtime – An alternative to the Electron Framework
for building desktop applications using web technologies. It can be bundled
and redistributed with applications or installed as a standalone component.
Because it is based on Microsoft Edge, it is also a Chromium derivative and
therefore inherits the bugs and vulnerabilities. Also, like Electron-based apps,
the patch gap may be longer than mainstream browsers due to the distribution
and update methods implemented by the apps that use the framework.

Moving Target Defense (MTD) – dynamically changing system dimensions
to increase uncertainty and complexity for attackers. MTD can be useful for
disrupting exploitation of vulnerabilities by “breaking” the determinism on which
attackers depend. There are very few real-world implementations of MTD but
one example is Address Space Layout Randomization (ASLR) which randomizes
the location of process memory in order to prevent attackers from being able
to reliably locate the memory addresses of vulnerable functions.

